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Inertial levitation
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We consider the steady levitation of a rigid plate on a thin air cushion with prescribed
injection velocity. This injection velocity is assumed to be much larger than that in a
conventional Prandtl boundary layer, so that inertial effects dominate. After applying
the classical ‘blowhard’ theory of Cole & Aroesty (1968) to the two-dimensional ver-
sion of the problem, it is shown that in three dimensions the flow may be foliated
into streamline surfaces using Lagrangian variables. An example is given of how this
may be exploited to solve the three-dimensional problem when the injection pressure
distribution is known.

1. Introduction
Several solidification processes arising in the glass industry rely on the idea of float-

ing a glass workpiece above a rigid porous medium through which air is injected at a
suitably high pressure. Depending on the geometry and the flow parameters, several
fluid mechanics regimes are possible; the airflow may be dominated by either inertial
or viscous forces and this flow may couple with the glass flow when the workpiece has
sufficiently low viscosity. Even when viscous forces are not dominant, there are several
theories available to describe the mechanics of steady floating. Our starting point is
the ‘blowhard’ theory of boundary layers with strong injection (Cole & Aroesty
1968). This theory, which is described below, considers boundary layer injection that
is so strong that the transverse velocity greatly exceeds that in a traditional Prandtl
boundary layer. For problems in which the flow is constrained to lie in a thin layer
between two boundaries, one of which is porous, a theory can be constructed in which
inertial and viscous forces are in balance, as in a traditional boundary layer (see for
example Petit 1986; Hinch & Lemaı̂tre 1994; Cox 2002). However, analytical progress
is possible only in geometries that are symmetric enough for similarity solutions to
be obtained. In the viscous-dominated limit, these solutions tend to those of classical
lubrication theory and in the inertia-dominated limit, they will be seen to agree with
the theory presented below.

In this note, we will describe some models for the basic dynamics of the airflow
under the assumptions that inertial effects dominate, that air compressibility is
negligible and that the workpiece can be assumed to be a rigid or flexible solid
plate levitating a small distance above a horizontal porous base. Even with these
simplifications, the flow modelling and analysis offer some interesting theoretical
challenges. As shown in § 2, these may be easily overcome in the two-dimensional
case; in § 3 we will describe how some progress may be made in three-dimensional
floating despite the complexity of the governing system of hyperbolic equations. The
remainder of the introduction is devoted to setting up the models and reviewing some
background theory.
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Figure 1. Schematic diagram of the geometry and glass sheet.

As shown in figure 1, the surface of the porous base is taken to be z = 0 and we
assume that an injection velocity is generated by a pumping mechanism that delivers
air at a known flow rate that depends on x and y with no feedback from the pressure
variation in the (x, y)-plane. Neglecting viscous, compressible and gravitational forces,
the steady air velocity between the base and the workpiece is (u, v, w), where

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
, (1.1)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂p

∂y
, (1.2)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
, (1.3)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (1.4)

Here, the constant air density is denoted by ρ and p denotes pressure. We further
assume that the base is perforated in such a way that the air emerges normally, so
that

u = v = 0, w = Ww0(x, y)

at z = 0, where W measures a typical injection velocity.
In writing (1.1)–(1.3), we have made the crucial assumption that W is larger than

the transverse velocity in the Prandtl boundary layer that will be generated at the
workpiece; this means that the flow in the levitation gas layer is inviscid to lowest
order, even though the layer is thin. Finally, we assume no normal flow across the
base of the workpiece z = Hh(x, y) (where H is a typical ‘ride height’) and an ambient
pressure p0 around the periphery of the workpiece, which must be an isobar.

The floating regime is one in which ε = H/L is small, where L is a typical horizontal
dimension of the workpiece. An estimate of ε is obtained by balancing ρu2 ∼ ρW 2ε−2

with the hydrostatic pressure ρgga caused by the workpiece, ρg being its density and
a its thickness. Thus ε2 ∼ ρW 2/(ρgga). We non-dimensionalize according to x = Lx̄,
y = Lȳ, z = εLz̄, u = (W/ε)ū, v = (W/ε)v̄, w = Ww̄ and p = p0 + ρW 2ε−2p̄, where a
bar indicates a non-dimensional variable: for simplicity the bars will henceforth be
dropped. To lowest order, (1.1)–(1.4) become, in these scaled variables,

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p

∂x
, (1.5)
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+ w

∂v

∂z
= −∂p

∂y
, (1.6)
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0 = −∂p

∂z
, (1.7)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1.8)

with

u = v = 0, w = w0 at z = 0,

(u, v, w) ·
(

∂h

∂x
,
∂h

∂y
, −1

)
= 0 at z = h(x, y),

and p = 0 at the workpiece periphery. The viscous boundary layer on z = h is negligibly
thin when ε � 1/

√
Re, where Re = ε−1WL/ν, and ν denotes the kinematic viscosity of

the air.

2. Two-dimensional flow
2.1. The Cole & Aroesty theory

Following the procedure in Cole & Aroesty (1968), when v = 0 and all variables are
independent of y, we may solve the hyperbolic system

u
∂u

∂x
+ w

∂u

∂z
= −dp

dx
,

∂u

∂x
+

∂w

∂z
= 0, (2.1)

with w = w0(x) at z = 0 by introducing the variable x∗ which denotes the x-station at
which the streamline passing through (x, z) emerges from the porous base at z = 0.
When x∗ is constant, the first equation of (2.1) may be written(

u
∂

∂x
+ w

∂

∂z

)(
p + 1

2
u2

)
= 0

and hence, when x and x∗ are regarded as independent variables rather than x and z

(and with a slight abuse of notation),

p(x) + 1
2
u2(x, x∗) = p(x∗), (2.2)

since u = 0 when x = x∗ (figure 2). Moreover, conservation of mass in the shaded
region of figure 2 implies that∫ x

x∗
w0(s) ds =

∫ z

0

u(x, ξ ) dξ,

the right-hand-side integral being taken with respect to the vertical coordinate. Hence,
when z is regarded as a function of (x, x∗) along a streamline, we can differentiate
with respect to x∗ to find the relationship between the streamline height, p, and w0.
Thus

∂z

∂x∗

∣∣∣∣
x=const

=
−w0(x

∗)

u
=

−w0(x
∗)√

2(p(x∗) − p(x))
. (2.3)

Now assuming that there is a dividing streamline emerging from x = z = 0 (so that
z = h(x) corresponds to x∗ =0) and since, by definition, x = x∗ on z = 0, we find that

h(x) =

∫ x

0

w0(s)√
2(p(s) − p(x))

ds. (2.4)
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Figure 2. Conservation of mass for the transformation (x, z) → (x, x∗).

This generalized Abel integral equation may easily be solved for w0 as a function
of p and h, but a more practical case arises when we know w0 and h and wish to find
the pressure p. Viewed in this way, (2.4) is nonlinear. Let us suppose that p(x) is a
strictly monotone decreasing differentiable function with non-zero derivative over the
interval 0 <x < 1, and that h(0) is finite. After the change of variables p(s) = p(0) − S,
p(x) = p(0) − X and the definitions

G(X) = − w0(x)√
2p′(x)

, H(X) = h(x),

equation (2.4) may then be rewritten as the Abel equation

H(X) =

∫ X

0

G(S)√
X − S

dS. (2.5)

Equation (2.5) may be inverted, for example by Laplace transform methods (see for
example Carrier, Crook & Pearson 1966), yielding

G(X) =
H(0)

π
√

X
+

∫ X

0

H′(S)

π
√

X − S
dS.

In general this does not seem to allow any analytical progress to be made for a
general h(x), as the unknown function p appears in the argument of H. However,
in the special case when h(x) is identically equal to a constant h0, the last expression
can be rewritten as a differential equation for p, which is

−w0(x)√
2p′(x)

=
h0

π
√

p(0) − p(x)
,

with solution

p(x) = p(0) − π2

8h2
0

(∫ x

0

w0(s) ds

)2

.

Finally, the constants p(0) and h0 are determined by the boundary condition

p(1) = 0, and the requirement that
∫ 1

−1
p(x) dx balances the weight of the lid. Given

the density ρg , the thickness a of the glass sheet and the gravitational acceleration
g, the weight of the workpiece per unit length in the y-direction is 2ρggaL. After
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non-dimensionalization, this weight is MG = ε22ρgga/ρW 2 so that

p(0) =
π2

8h2
0

(∫ 1

0

w0(s) ds

)2

, MG = 2p(0) − π2

8h2
0

∫ 1

−1

(∫ x

0

w0(s) ds

)2

dx.

As an example, let us assume a uniform inlet velocity w0. In this case

p(x) =
π2w2

0

8h2
0

(1 − x2),

and

h0 =
πw0√
6MG

. (2.6)

From (2.2), it then follows that

u(x, x∗) =
πw0

2h0

√
x2 − x∗2,

while (2.3) leads to

z = h0

[
1 − arcsin(x∗/x)

π/2

]
.

Hence x∗ = x cos(πz/2h0) and

u(x, z) =
πw0

2h0

x sin

(
πz

2h0

)
.

Finally, integration of the continuity equation yields

w(x, z) = w0 cos

(
πz

2h0

)
,

thus completing the solution of (2.1). For completeness, we note from (2.6) that the
dimensional ride height is

H = π

(
ρW 2

12ρgga

)1/2

L.

3. Three-dimensional flow
It does not seem possible in general to isolate a closed-form equation such as (2.4)

for the pressure p as a function of the floating height h. Fortunately, the inverse
problem of finding h from p is more tractable, as we show in this section. Having
computed h[p(x, y)], one could in principle devise an iterative algorithm to invert
this operation.

First, we solve the problem for the velocity components (u, v) and, for this purpose,
we write equations (1.5) to (1.8) in Lagrangian variables. Let the functions

x = x(x∗, y∗, t), y = y(x∗, y∗, t), z = z(x∗, y∗, t) (3.1)

be such that x(x∗, y∗, 0) = x∗, y(x∗, y∗, 0) = y∗, z(x∗, y∗, 0) = 0, and that (u, v, w) =
(∂x/∂t, ∂y/∂t, ∂z/∂t) = ∂x/∂t , say. The momentum equations (1.5) and (1.6) become

∂2x

∂t2
= −∂p

∂x
,

∂2y

∂t2
= −∂p

∂y
, (3.2)

with ∂x/∂t = ∂y/∂t = 0 at t =0 and, given p(x, y), they form a closed system.
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Figure 3. Streamlines passing above the point P = (x, y) = ( 3
2
, 1) for the pressure distribution

(3.7) with p0, κ = 1
2
. They emerge vertically from the locus of entry points Γ (P ).

The next step is to compute the vertical flow, which we do using conservation of
mass. This can be expressed by considering the volume of an element of fluid emerging
from a surface element dx∗ dy∗ in a time dt . This volume is initially w0dx∗ dy∗ dt and
subsequently becomes Jdx∗ dy∗ dt where J = (∂x/∂t) · (∂x/∂x∗ ∧ ∂x/∂y∗). Equating
the two gives

∂(x, y, z)

∂(x∗, y∗, t)
= w0(x

∗, y∗), (3.3)

which, assuming (3.2) has been solved, is a linear first-order partial differential
equation for the function z(x∗, y∗, t), namely

∂(x, y)

∂(y∗, t)

∂z

∂x∗ +
∂(x, y)

∂(t, x∗)

∂z

∂y∗ +
∂(x, y)

∂(x∗, y∗)

∂z

∂t
= w0(x

∗, y∗). (3.4)

Knowing z(x∗, y∗, t), the ride height h at a point (x, y) is then found from the limiting
streamline x(x∗, y∗, t) that passes tangentially to the glass sheet above that point. If
we suppose that

∂x

∂t
(0, 0, t) =

∂y

∂t
(0, 0, t) = 0,

then

h(x, y) = lim
x∗,y∗→0,t→∞

z(x∗, y∗, t),

in which the limit is taken with the constraint that x and y remain fixed in (3.1), i.e.
we let x∗ and y∗ tend to the origin along the locus of entering streamlines for the
point (x, y). This locus is denoted by Γ in figure 3.

The solution of (3.4) is given by solving the characteristic equations

dx∗

∂(x, y)/∂(y∗, t)
=

dy∗

∂(x, y)/∂(t, x∗)
=

dt

∂(x, y)/∂(x∗, y∗)
=

dz

w0(x∗, y∗)
, (3.5)

which in fact comprise the streamlines through the points (x, y, z), where x and y are
fixed and 0 <z <h(x, y).
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We note that h(x, y) is simply
∫ ∞

0
(dz/dt) dt , and, denoting ∂(x, y)/∂(x∗, y∗) by

J(x∗, y∗, t), we thus have

h(x, y) =

∫ ∞

0

w0[x
∗(x, y, t), y∗(x, y, t)]

J[x∗(x, y, t), y∗(x, y, t), t]
dt. (3.6)

In the Appendix, we present an alternative description of this foliation of the stream-
lines that offers an interesting analogy between the present flow and ray theory in
optics.

3.1. Illustrative solution

To illustrate our point, we now consider the pressure profile

p = p0(1 − x2 − κ2y2). (3.7)

The isobars are elliptic and, since the pressure is ambient at the boundary, we
implicitly assume an elliptic shape for the workpiece. Equations (3.2) are linear, with
solution

x = x∗ cosh τ, y = y∗ cosh κτ,

where time has been rescaled using τ =
√

2p0t for convenience. Equation (3.4) then
becomes

−x∗ sinh τ cosh κτ
∂z

∂x∗ − κy∗ sinh κτ cosh τ
∂z

∂y∗ + cosh τ cosh κτ
∂z

∂τ
=

w0(x
∗, y∗)√
2p0

,

and the characteristic equations are

−dx∗

x∗ sinh τ cosh κτ
=

−dy∗

κy∗ sinh κτ cosh τ
=

dτ

cosh τ cosh κτ
=

√
2p0 dz

w0(x∗, y∗)
.

Hence, on a characteristic, x∗ = x sech τ , y∗ = y sech κτ , and

dz

dτ
=

w0(x
∗, y∗)√
2p0

sech τ sech κτ.

Hence,

z =
1√
2p0

∫ τ

0

w0(x sech τ ′, y sech κτ ′) sech τ ′ sech κτ ′ dτ ′,

and h(x, y) = limτ→∞ z, keeping x and y fixed, i.e.

h(x, y) =
1√
2p0

∫ ∞

0

w0(x sech τ, y sech κτ ) sech τ sech κτ dτ. (3.8)

Consequently, as in two-dimensional flows, a constant inlet velocity and a pressure
profile of the form (3.7) lead to a uniform elevation h(x, y).

Similarly to § 2, by equating the pressure integrated over the workpiece with its
weight, we find that p0 = 2ε2ρgga/(ρW 2), so that the dimensional ride height for
elliptic workpieces with area A= πL2/κ is

H =

(
ρW 2A

4πρgga

)1/2 √
κ

∫ ∞

0

sech τ sech κτ dτ.

In the case κ = 1, the integral above equals one, which is consistent with the similarity
solutions in Hinch & Lemaı̂tre (1994) and Cox (2002) in the zero viscosity limit.

This analysis depends crucially on the pressure having a maximum at the stagnation
point. It is easy to see that if it had a saddle, then the integral in (3.8) would
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diverge; for example, if (3.7) is replaced by p = p0(1 − x2 + κ2y2), then dz/dτ =
(w0/

√
2p0) sech τ sec κτ . Indeed, if there is any direction through a stagnation point

in which the pressure has a minimum, we can easily see from the dynamical system
(3.2) that the Jacobian ∂(x, y)/∂(x∗, y∗) will vanish. Hence, our theory will only be
acceptable under the conditions that (i) there is only one stagnation point, (ii) the
pressure has a maximum there. It would be interesting to know what constraint these
conditions put on the perimeter of the workpiece.

4. Concluding remarks
We have presented a theory which, in principle, describes the complicated rotational

flow that occurs in three-dimensional floating, where viscous and unsteady effects are
ignored. Our theory gives physically acceptable predictions only in the case where
there is only one stagnation point for the horizontal velocity (u, v) and, in addition,
the pressure has a maximum at that stagnation point.

Another deficiency of the theory is that, from (3.3), it cannot describe flows in which
the injection velocity is zero or negative over any region of the base plate. Hence the
theory cannot, as it stands, apply to injection through discrete holes in the base plate.
Of course, if air were blown through a single hole of sufficient radius in the base
plate, levitation could not occur because of the pressure drop as the air accelerates
in the layer. In fact, it is possible to support a plate by this method by placing the
base plate above the workpiece. It can also be supported in such an upside-down
configuration by suction through the base plate, and this technique is also used in the
glass industry. However such suction flows are not reversals of those described above.

Finally, we regret that we have been unable to present any stability analysis for our
flow. Intuitively, it is likely that a horizontal plate levitated under gravity will be stable
because the levitation pressure will be roughly proportional to h−2(t), assuming quasi-
static flow. A tilting plate may be unstable in inviscid theory and, indeed, ‘see-sawing’
plates have been observed in practice (Hinch & Lemaı̂tre, private communication).

We would like to thank Professor E. J. Hinch for valuable comments.

Appendix
We can reformulate the two-dimensional problem (2.1) in terms of the function

z = Z(x, s), which denotes the vertical displacement of a streamline. The independent
variable s is required to be constant on a streamline and may be chosen to
be x∗. Transforming the dependent variables from (u, w, p) to (u, Z, p) and the
independent variables from (x, z) to (x, s), we find that w = u∂Z/∂x, and conservation
of momentum and mass now become

u
∂u

∂x
= −dp

dx
,

∂

∂x

(
u

∂Z

∂s

)
= 0,

with

Z(s, s) = 0, u(s, s) = 0, w(s, s) = w0(s).

In this form, both equations may be integrated explicitly. While the former leads to
the Bernoulli relation (2.2), the latter gives

∂Z

∂s
=

c(s)

u(x, s)
, (A 1)
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where the function c(s) is obtained from the boundary condition on w on Z = 0.
Noting that (∂Z/∂s)(s, s) = − (∂Z/∂x)(s, s), we have c(s) = limx→s u(x, s)(∂Z/∂s) =
−w0(s), which leads to equation (2.3) and the ensuing developments.

In three dimensions, let us foliate the flow into stream surfaces (surfaces composed
of streamlines). To this end, we write z = Z(x, y, s), where now s is any independent
variable that is constant on a stream surface, so that w = u∂Z/∂x + v∂Z/∂y. Then
(1.5)–(1.8) become respectively

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
, u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
, 0 = −∂p

∂s
, (A 2)

∂u

∂x
+

∂v

∂y
+

(
u

∂

∂x
+ v

∂

∂y

)
log

∂Z

∂s
= 0, (A 3)

and we soon find from (A 2) that p + 1
2
(u2 + v2) is constant on a streamline. It is

convenient to define the curves s = const in the (x, y)-plane as the level curves of p,
so that

p(x, y) + 1
2
[u2(x, y, s) + v2(x, y, s)] = s. (A 4)

In this way, the total head of the flow is uniform on each stream surface. As a
result, the projection of the flow on the (x, y)-plane for s fixed is irrotational, for,
differentiating (A 4) with respect to x and comparing it to the first equation of (A 2),
we find that ∂u/∂y = ∂v/∂x. Hence, we may write

(u, v) = ∇φ(x, y, s),

where ∇ ≡ (∂/∂x, ∂/∂y). In terms of the velocity potential φ, the Bernoulli equation
(A 4) becomes

1
2
|∇φ(x, y, s)|2 = s − p(x, y), (A 5)

which is the eikonal equation in optics for rays in an inhomogeneous medium. On
the other hand, the continuity equation becomes

∇2φ + ∇φ · ∇ log
∂Z

∂s
= 0,

which is just the transport equation of optics, where the term 1
2
∂Z/∂s plays the role

of the field amplitude.
For a given pressure distribution and a fixed value of s, (A 5) has the characteristic

equations

∂x

∂t
= u,

∂y

∂t
= v,

∂u

∂t
= −∂p

∂x
,

∂v

∂t
= −∂p

∂y
, (A 6)

as in (3.2) and (3.5), where t parameterizes the characteristics, which are simply the
projections of the streamlines in the (x, y)-plane. Taking r to be a coordinate along
the curves s =const, the initial conditions for x(r, s, t), y(r, s, t), u(r, s, t), and v(r, s, t)
are

x = x∗(r, s), y = y∗(r, s), u = v = 0,

at t = 0, where, as before, x∗ and y∗ denote the coordinates of the point of entry of
the streamline through (x, y, z). On a characteristic,

∇2φ +
∂

∂t
log

∂Z

∂s
(x(r, s, t), y(r, s, t), s) = 0. (A 7)
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At t = 0, the function Z satisfies

Z(x(r, s, 0), y(r, s, 0), s) = 0,
∂Z

∂t
(x(r, s, 0), y(r, s, 0), s) = w0(x

∗, y∗). (A 8)

As in § 3, by solving (A 6) for a given p(x, y), we can in principle obtain x, y, u, and
v as functions of r , s, and t . For fixed s, the chain rule and (A 6) combine to give

∇2φ =
∂u

∂x
+

∂v

∂y
=

∂

∂t
log

∂(x, y)

∂(r, t)
.

Substituting this result in (A 7), we thus obtain

∂(x, y)

∂(r, t)

∂Z

∂s
= c(r, s),

which is the three-dimensional counterpart of (A 1). The function c(r, s) is obtained
in the same way as in the two-dimensional case by examining this equation on the
plane z = 0. We have

Z(x(r, s, t), y(r, s, t), s) = 0 at t = 0.

Differentiating this expression once with respect to r , s, and t , successively, gives

lim
t→0

∂(x, y)

∂(r, t)

∂Z

∂s
= lim

t→0

∂(x, y)

∂(s, r)

∂Z

∂t
(x(r, s, t), y(r, s, t), s).

Therefore, using (A 8),

∂(x, y)

∂(r, t)

∂Z

∂s
= lim

t→0

∂(x, y)

∂(s, r)
w0(x

∗, y∗).

Now, let Γ (x, y) denote the locus of entry points on the plane z = 0 of the streamlines
that intersect the vertical axis through (x, y), as in figure 3. Then the ‘ride height’ of
the glass workpiece is computed from

h(x, y) =

∫
Γ (x,y)

∂Z

∂s
ds,

which can easily be written as (3.6).
Note that for a pressure distribution with non-convex isobars, the characteristics

of (A 6) intersect and form envelopes, in analogy with caustics for optical rays. The
analogous optical amplitude, which is 1

2
∂Z/∂s from (A 7), is infinite on such a caustic.
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